Published in

Nature Research, Nature, 7997(626), p. 66-71, 2024

DOI: 10.1038/s41586-023-06828-5

The International Conference on Ultrafast Phenomena (UP) 2022, 2022

DOI: 10.1364/up.2022.th5a.1

Links

Tools

Export citation

Search in Google Scholar

Observation of interband Berry phase in laser-driven crystals

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractEver since its discovery1, the notion of the Berry phase has permeated all branches of physics and plays an important part in a variety of quantum phenomena2. However, so far all its realizations have been based on a continuous evolution of the quantum state, following a cyclic path. Here we introduce and demonstrate a conceptually new manifestation of the Berry phase in light-driven crystals, in which the electronic wavefunction accumulates a geometric phase during a discrete evolution between different bands, while preserving the coherence of the process. We experimentally reveal this phase by using a strong laser field to engineer an internal interferometer, induced during less than one cycle of the driving field, which maps the phase onto the emission of higher-order harmonics. Our work provides an opportunity for the study of geometric phases, leading to a variety of observations in light-driven topological phenomena and attosecond solid-state physics.