Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(15), 2024

DOI: 10.1038/s41467-024-46144-8

Links

Tools

Export citation

Search in Google Scholar

Efficient all-small-molecule organic solar cells processed with non-halogen solvent

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAll-small-molecule organic solar cells with good batch-to-batch reproducibility combined with non-halogen solvent processing show great potential for commercialization. However, non-halogen solvent processing of all-small-molecule organic solar cells are rarely reported and its power conversion efficiencies are very difficult to improve. Herein, we designed and synthesized a small molecule donor BM-ClEH that can take advantage of strong aggregation property induced by intramolecular chlorine-sulfur non-covalent interaction to improve molecular pre-aggregation in tetrahydrofuran and corresponding micromorphology after film formation. Tetrahydrofuran-fabricated all-small-molecule organic solar cells based on BM-ClEH:BO-4Cl achieved high power conversion efficiencies of 15.0% in binary device and 16.1% in ternary device under thermal annealing treatment. In contrast, weakly aggregated BM-HEH without chlorine-sulfur non-covalent bond is almost inefficient under same processing conditions due to poor pre-aggregation induced disordered π-π stacking, indistinct phase separation and exciton dissociation. This work promotes the development of non-halogen solvent processing of all-small-molecule organic solar cells and provides further guidance.