Published in

American Institute of Physics, AVS Quantum Science, 3(4), p. 034404, 2022

DOI: 10.1116/5.0114436

Links

Tools

Export citation

Search in Google Scholar

Aberration control in quantitative widefield quantum microscopy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Widefield quantum microscopy based on nitrogen-vacancy (NV) centers in diamond has emerged as a powerful technique for quantitative mapping of magnetic fields with a sub-micrometer resolution. However, the accuracy of the technique has not been characterized in detail so far. Here, we show that optical aberrations in the imaging system may cause large systematic errors in the measured quantity beyond trivial blurring. We introduce a simple theoretical framework to model these effects, which extends the concept of a point spread function to the domain of spectral imaging. Using this model, the magnetic field imaging of test magnetic samples is simulated under various scenarios, and the resulting errors are quantified. We then apply the model to previously published data, show that apparent magnetic anomalies can be explained by the presence of optical aberrations, and demonstrate a post-processing technique to retrieve the source quantity with improved accuracy. This work presents a guide to predict and mitigate aberration induced artifacts in quantitative NV-based widefield imaging and in spectral imaging more generally.