Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sci, 4(4), p. 35, 2022

DOI: 10.3390/sci4040035

Links

Tools

Export citation

Search in Google Scholar

Calcium Biofortification of Rocha Pear Fruits: Implications on Mineral Elements, Sugars and Fatty Acids Accumulation in Tissues

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Following an agronomic approach for the Ca enrichment of Rocha pears, this study aimed to assess the interactions between mineral nutrients in fruit tissues at harvest and after storage for 5 months and to characterize the implications on the profile of sugars and fatty acids (FA). A total of seven foliar sprays (with concentrations of 0.1–0.6 kg·ha−1 Ca(NO3)2 and 0.8–8 kg·ha−1 CaCl2) were applied to pear trees. After harvest, the fruits were stored for 5 months, in environmentally controlled chambers, and the mineral contents in five regions (on the equatorial section) of the fruits were assessed, while the sugar and FA content were quantified. For both dates, all foliar sprayed treatments, at different extends, increased Ca content in the center and near the epidermis of Rocha pear fruits and the levels of K, Mn, Fe, Zn and Cu also varied. At harvest, the Ca treatments did not affect the levels of sucrose, glucose, fructose and sorbitol and, after storage, their concentrations remained higher in Ca-treated fruits. Additionally, the tendency of the relative proportions of FA was C18:2 > C18:1 > C16:0 > C18:3 > C18:0 > chains inferior to 16 C (<16:0), but after storage it was C18:2 > C16:0 > C18:3 > C18:0 > C18:1 > chains inferior to 16 C (<16:0). It is concluded that the heterogeneous distribution of Ca in the tissues of Rocha pear fruits results from its absorption in the peel after Ca(NO3)2 and CaCl2 sprays and from the xylemic flux in the core prior to maturity. Additionally, the hydrolysis of complex polysaccharides affects the contents of simpler sugars during maturation, ripening and senescence, while storage decreases the amount of total fatty acids (TFA), but the double bond index (DBI) indicate that cell membrane fluidity remains unaffected.