Published in

MDPI, International Journal of Molecular Sciences, 19(23), p. 11270, 2022

DOI: 10.3390/ijms231911270

Links

Tools

Export citation

Search in Google Scholar

Antibiofilm Properties of Antiseptic Agents Used on Pseudomonas aeruginosa Isolated from Diabetic Foot Ulcers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In diabetic foot ulcers (DFUs), biofilm formation is a major challenge that promotes wound chronicity and delays healing. Antiseptics have been proposed to combat biofilms in the management of DFUs. However, there is limited evidence on the activity of these agents against biofilms, and there are questions as to which agents have the best efficiency. Here, we evaluated the antibiofilm activity of sodium hypochlorite, polyvinylpyrrolidoneIodine (PVPI), polyhexamethylenebiguanide (PHMB) and octenidine against Pseudomonas aeruginosa strains using static and dynamic systems in a chronic-wound-like medium (CWM) that mimics the chronic wound environment. Using Antibiofilmogram®, a technology assessing the ability of antiseptics to reduce the initial phase of biofilm formation, we observed the significant activity of antiseptics against biofilm formation by P. aeruginosa (at 1:40 to 1:8 dilutions). Moreover, 1:100 to 1:3 dilutions of the different antiseptics reduced mature biofilms formed after 72 h by 10-log, although higher concentrations were needed in CWM (1:40 to 1:2). Finally, in the BioFlux200TM model, after biofilm debridement, sodium hypochlorite and PHMB were the most effective antiseptics. In conclusion, our study showed that among the four antiseptics tested, sodium hypochlorite demonstrated the best antibiofilm activity against P. aeruginosa biofilms and represents an alternative in the management of DFUs.