Published in

MDPI, Plants, 19(11), p. 2510, 2022

DOI: 10.3390/plants11192510

Links

Tools

Export citation

Search in Google Scholar

Seed Priming with Glass Waste Microparticles and Red Light Irradiation Mitigates Thermal and Water Stresses in Seedlings of Moringa oleifera

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The association between population increase and the exploitation of natural resources and climate change influences the demand for food, especially in semi-arid regions, highlighting the need for technologies that could provide cultivated species with better adaptation to agroecosystems. Additionally, developing cultivation technologies that employ waste materials is highly desirable for sustainable development. From this perspective, this study aimed to evaluate whether seed priming with glass waste microparticles used as a silicon source under red light irradiation mitigates the effects of thermal and water stress on seedlings of Moringa oleifera. The experimental design was set up in randomized blocks using a 2 × 2 × 2 factorial arrangement consisting of seed priming (NSP—no seed priming, and SPSi—seed priming with glass microparticles under red light irradiation), soil water replenishment (W50—50%, and W100—100% of crop evapotranspiration—ETc), and temperature change (TC30°—30 °C day/25 °C night and TC40°—40 °C day/35 °C night). Seed priming with glass microparticles under red light irradiation mitigated the effects of thermal and water stress on seedlings of Moringa oleifera seedlings through the homeostasis of gas exchange, leaf water status, osmotic adjustment, and the antioxidant mechanism.