Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astronomical Journal, 4(164), p. 163, 2022

DOI: 10.3847/1538-3881/ac8d63

Links

Tools

Export citation

Search in Google Scholar

New Dynamical State and Habitability of the HD 45364 Planetary System

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Planetary systems with multiple giant planets provide important opportunities to study planetary formation and evolution. The HD 45364 system hosts two giant planets that reside within the habitable zone (HZ) of their host star and was the first system discovered with a 3:2 mean motion resonance (MMR). Several competing migration theories with different predictions have previously provided explanations regarding the observed resonance through dynamical simulations that utilized limited data. Here, over ten years since the original discovery, we revisit the system with a substantially increased radial velocity (RV) sample from High Accuracy Radial Velocity Planet Searcher spectrograph and High Resolution Echelle Spectrometer that significantly extends the observational baseline. We present the revised orbital solutions for the two planets using both Keplerian and dynamical models. Our RV models suggest orbits that are more circular and separated than those previously reported. As a result, the predicted strong planet–planet interactions were not detected. The system dynamics were reanalyzed, and the planet pair was found to exhibit apsidal behavior of both libration and circulation, indicating a quasi-resonance state rather than being truly in MMR. The new orbital solution and dynamical state of the system confirm migration models that predicted near-circular orbits as the preferred scenario. We also study the habitability prospects of this system and found that an additional Earth-mass planet and exomoons in the HZ are possible. This work showcases the importance of continued RV observations and its impact on our knowledge of the system’s dynamical history. HD 45364 continues to be an interesting target for both planetary formation and habitability studies.