Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of the American Chemical Society, 28(137), p. 9186-9194, 2015

DOI: 10.1021/jacs.5b05571

Links

Tools

Export citation

Search in Google Scholar

Donor-Promoted 1,2-Hydrogen Migration from Silicon to a Saturated Ruthenium Center and Access to Silaoxiranyl and Silaiminyl Complexes

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Masked silylene complexes Cp*(IXy-H)(H)RuSiH2R (R = Mes (3) and Trip (4); IXy = 1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene; “IXy-H” is the deprotonated form of IXy) exhibit metallosilylene-like (LnM–Si–R) reactivity, as observed in reactions of nonenolizable ketones, enones, and tosyl azides, to give unprecedented silaoxiranyl, oxasilacyclopentenyl, and silaiminyl complexes, respectively. Notably, these silicon-containing complexes are derived from the primary silanes MesSiH3 and TripSiH3 via activation of all three Si–H bonds. DFT calculations suggest that the mechanism of formation for the silaoxiranyl complex Cp*(IXy)(H)2Ru–Si(OCPh2)Trip (6) involves coordination of benzophenone to a silylene silicon atom, followed by a single-electron transfer in which Si-bonded, non-innocent benzophenone accepts an electron from the reactive, electron-rich ruthenium center. Importantly, this electron transfer promotes an unusual 1,2-hydrogen migration to the resulting, more electron-deficient ruthenium center via a diradicaloid transition state.