Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nutrients, 19(14), p. 4021, 2022

DOI: 10.3390/nu14194021

Links

Tools

Export citation

Search in Google Scholar

Association of Gastric Myoelectric Activity with Dietary Intakes, Substrate Utilization, and Energy Expenditure in Adults with Obesity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Obesity can modulate gastric myoelectric activity (GMA); however, the relationship of GMA with nutrient intakes and substrate utilization in adults with obesity is lacking. We examined the association of dietary intakes, energy expenditure, and substrate utilization with the GMA. Participants (n = 115, 18–60 y) were divided into healthy weight (HW, n = 24), overweight (OW, n = 29), obese (OB, n = 41) and morbidly obese (MO, n = 21). Two-day multi-pass 24 h recalls were conducted. The GMA was measured by multichannel electrogastrography (EGG) with water-load (WL) testing. Resting metabolic rate (RMR) and percentages of substrate utilization were measured by indirect calorimetry. In the HW, protein intake was directly correlated with average dominant frequency (ADF) and with WL volume, while in obese participants and the MO subgroup, WL volume correlated with carbohydrate intake. In participants with obesity, ADF was positively correlated with fiber intake. In participants with obesity and the OB subgroup, RMR was positively correlated with water-load volume (r = 0.39 and 0.37, p < 0.05). The ADF showed negative correlations with percent of fat utilization and positive correlations with percent of CHO utilization in non-obese groups. However, protein utilization showed inverse correlation in all obese groups. In conclusion, these distinctive associations suggest that certain dietary compositions and dieting regimens impact GMA patterns.