Published in

IOP Publishing, Nuclear Fusion, 12(62), p. 126015, 2022

DOI: 10.1088/1741-4326/ac90d5

Links

Tools

Export citation

Search in Google Scholar

Constraints on ion velocity distributions from fusion product spectroscopy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Recent inertial confinement fusion experiments have shown primary fusion spectral moments which are incompatible with a Maxwellian velocity distribution description. These results show that an ion kinetic description of the reacting ions is necessary. We develop a theoretical classification of non-Maxwellian ion velocity distributions using the spectral moments. At the mesoscopic level, a monoenergetic decomposition of the velocity distribution reveals there are constraints on the space of spectral moments accessible by isotropic distributions. General expressions for the directionally dependent spectral moments of anisotropic distributions are derived. At the macroscopic level, a distribution of fluid element velocities modifies the spectral moments in a constrained manner. Experimental observations can be compared to these constraints to identify the character and isotropy of the underlying reactant ion velocity distribution and determine if the plasma is hydrodynamic or kinetic.