Published in

De Gruyter, Nanophotonics, 22(11), p. 5165-5175, 2022

DOI: 10.1515/nanoph-2022-0523

Links

Tools

Export citation

Search in Google Scholar

Mesoporous biophotonic carbon spheres with tunable curvature for intelligent drug delivery

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Mesoporous carbon spheres (MCSs) are widely used in the field of pollutants adsorption, energy storage and various biomedicine applications such as targeted delivery vector, phototherapy sensitizers, bioimaging contrast agents, etc. Current synthetic strategies including soft templating and hard templating methods generally have the limits of using expensive surfactants or lack of control over the pore structures. Therefore, the complex and uncontrollable pore structures limit its further clinical application. Herein, we proposed a new synthetic strategy to control the uniformity of pore channel arrangement in MCSs which can modulate the photonic property and the corresponding light controlled drug release property in intelligent drug delivery. The as obtained MCSs with relative uniform pore channel arrangement and long pore channels are demonstrated to have the best NIR light-induced drug release performance. This work provides not only new synthetic method to modulate pore structure characteristics and biophotonic property of MCSs, but also uniform MCSs as novel delivery platforms with advanced controlled release performance.