Published in

Nature Research, Nature Chemistry, 2(3), p. 114-119, 2011

DOI: 10.1038/nchem.956

Links

Tools

Export citation

Search in Google Scholar

Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Diatomic molecules attached to complexed iron or cobalt centres are important in many biological processes. In natural systems, metallotetrapyrrole units carry respiratory gases or provide sensing and catalytic functions. Conceiving synthetic model systems strongly helps to determine the pertinent chemical foundations for such processes, with recent work highlighting the importance of the prosthetic groups' conformational flexibility as an intricate variable affecting their functional properties. Here, we present simple model systems to investigate, at the single molecule level, the interaction of carbon monoxide with saddle-shaped iron- and cobalt-porphyrin conformers, which have been stabilized as two-dimensional arrays on well-defined surfaces. Using scanning tunnelling microscopy we identified a novel bonding scheme expressed in tilted monocarbonyl and cis-dicarbonyl configurations at the functional metal-macrocycle unit. Modelling with density functional theory revealed that the weakly bonded diatomic carbonyl adduct can effectively bridge specific pyrrole groups with the metal atom as a result of the pronounced saddle-shape conformation of the porphyrin cage.