Published in

American Institute of Physics, Applied Physics Letters, 14(121), p. 142204, 2022

DOI: 10.1063/5.0103336

Links

Tools

Export citation

Search in Google Scholar

Boson peak: Damped phonon in solids

Journal article published in 2022 by Q. Guo, H. P. Zhang ORCID, Z. Lu, H. Y. Bai ORCID, P. Wen, W. H. Wang ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The boson peak has long been considered an exclusive fingerprint of structural glasses, attributed to the disordered structure nature of glass. However, numerous studies also revealed the existence of boson peaks in many crystalline materials. The paradox is an unsolved knot in condensed matter physics. Here, we systematically explore the boson peaks in various disordered materials via a low-temperature specific heat perspective. A linear relationship between the boson peak temperature and the transverse sound velocity is well established, which indicates the phonon nature of the boson peak. Further analysis reveals that the boson peak is a ubiquitous hallmark of all solids that originates from the transverse mode damping, and glasses with disordered structures could enhance the phonon damping and result in the distinct boson peak phenomenon. The results have benefits for a better understanding of the structural origins of boson peaks.