Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, Genome Medicine, 1(15), 2023

DOI: 10.1186/s13073-023-01212-4

Links

Tools

Export citation

Search in Google Scholar

Shared genetic architecture between irritable bowel syndrome and psychiatric disorders reveals molecular pathways of the gut-brain axis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Irritable bowel syndrome (IBS) often co-occurs with psychiatric and gastrointestinal disorders. A recent genome-wide association study (GWAS) identified several genetic risk variants for IBS. However, most of the heritability remains unidentified, and the genetic overlap with psychiatric and somatic disorders is not quantified beyond genome-wide genetic correlations. Here, we characterize the genetic architecture of IBS, further, investigate its genetic overlap with psychiatric and gastrointestinal phenotypes, and identify novel genomic risk loci. Methods Using GWAS summary statistics of IBS (53,400 cases and 433,201 controls), and psychiatric and gastrointestinal phenotypes, we performed bivariate casual mixture model analysis to characterize the genetic architecture and genetic overlap between these phenotypes. We leveraged identified genetic overlap to boost the discovery of genomic loci associated with IBS, and to identify specific shared loci associated with both IBS and psychiatric and gastrointestinal phenotypes, using the conditional/conjunctional false discovery rate (condFDR/conjFDR) framework. We used functional mapping and gene annotation (FUMA) for functional analyses. Results IBS was highly polygenic with 12k trait-influencing variants. We found extensive polygenic overlap between IBS and psychiatric disorders and to a lesser extent with gastrointestinal diseases. We identified 132 independent IBS-associated loci (condFDR < 0.05) by conditioning on psychiatric disorders (n = 127) and gastrointestinal diseases (n = 24). Using conjFDR, 70 unique loci were shared between IBS and psychiatric disorders. Functional analyses of shared loci revealed enrichment for biological pathways of the nervous and immune systems. Genetic correlations and shared loci between psychiatric disorders and IBS subtypes were different. Conclusions We found extensive polygenic overlap of IBS and psychiatric and gastrointestinal phenotypes beyond what was revealed with genetic correlations. Leveraging the overlap, we discovered genetic loci associated with IBS which implicate a wide range of biological pathways beyond the gut-brain axis. Genetic differences may underlie the clinical subtype of IBS. These results increase our understanding of the pathophysiology of IBS which may form the basis for the development of individualized interventions.