Dissemin is shutting down on January 1st, 2025

Published in

De Gruyter, Statistical Applications in Genetics and Molecular Biology, 1(21), 2022

DOI: 10.1515/sagmb-2022-0003

Links

Tools

Export citation

Search in Google Scholar

pwrBRIDGE: a user-friendly web application for power and sample size estimation in batch-confounded microarray studies with dependent samples

Journal article published in 2022 by Qing Xia ORCID, Jeffrey A. Thompson, Devin C. Koestler
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Batch effect Reduction of mIcroarray data with Dependent samples usinG Empirical Bayes (BRIDGE) is a recently developed statistical method to address the issue of batch effect correction in batch-confounded microarray studies with dependent samples. The key component of the BRIDGE methodology is the use of samples run as technical replicates in two or more batches, “bridging samples”, to inform batch effect correction/attenuation. While previously published results indicate a relationship between the number of bridging samples, M, and the statistical power of downstream statistical testing on the batch-corrected data, there is of yet no formal statistical framework or user-friendly software, for estimating M to achieve a specific statistical power for hypothesis tests conducted on the batch-corrected data. To fill this gap, we developed pwrBRIDGE, a simulation-based approach to estimate the bridging sample size, M, in batch-confounded longitudinal microarray studies. To illustrate the use of pwrBRIDGE, we consider a hypothetical, longitudinal batch-confounded study whose goal is to identify Alzheimer’s disease (AD) progression-associated genes from amnestic mild cognitive impairment (aMCI) to AD in human blood after a 5-year follow-up. pwrBRIDGE helps researchers design and plan batch-confounded microarray studies with dependent samples to avoid over- or under-powered studies.