Published in

MDPI, Cancers, 19(14), p. 4902, 2022

DOI: 10.3390/cancers14194902

Links

Tools

Export citation

Search in Google Scholar

Regulation of Metastasis in Ewing Sarcoma

Journal article published in 2022 by Mingli Li ORCID, Chunwei Chen ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Ewing sarcoma (EwS) is a type of bone and soft tissue tumor in children and adolescents. Over 85% of cases are caused by the expression of fusion protein EWSR1-FLI1 generated by chromosome translocation. Acting as a potent chimeric oncoprotein, EWSR1-FLI1 binds to chromatin, changes the epigenetic states, and thus alters the expression of a large set of genes. Several studies have revealed that the expression level of EWSR1-FLI1 is variable and dynamic within and across different EwS cell lines and primary tumors, leading to tumoral heterogeneity. Cells with high EWSR1-FLI1 expression (EWSR1-FLI1-high) proliferate in an exponential manner, whereas cells with low EWSR1-FLI1 expression (EWSR1-FLI1-low) tend to have a strong propensity to migrate, invade, and metastasize. Metastasis is the leading cause of cancer-related deaths. The continuous evolution of EwS research has revealed some of the molecular underpinnings of this dissemination process. In this review, we discuss the molecular signatures that contribute to metastasis.