Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Molecular Sciences, 19(23), p. 11693, 2022

DOI: 10.3390/ijms231911693

Links

Tools

Export citation

Search in Google Scholar

Impact of Acetate versus Citrate Dialysates on Intermediary Metabolism—A Targeted Metabolomics Approach

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Acetate is widely used as a dialysate buffer to avoid the precipitation of bicarbonate salts. However, even at low concentrations that wouldn’t surpass the metabolic capacity of the Krebs tricarboxylic acid (TCA) cycle, other metabolic routes are activated, leading to undesirable clinical consequences by poorly understood mechanisms. This study aims to add information that could biologically explain the clinical improvements found in patients using citrate dialysate. A unicentric, cross-over, prospective targeted metabolomics study was designed to analyze the differences between two dialysates, one containing 4 mmol/L of acetate (AD) and the other 1 mmol/L of citrate (CD). Fifteen metabolites were studied to investigate changes induced in the TCA cycle, glycolysis, anaerobic metabolism, ketone bodies, and triglyceride and aminoacidic metabolism. Twenty-one patients completed the study. Citrate increased during the dialysis sessions when CD was used, without surpassing normal values. Other differences found in the next TCA cycle steps showed an increased substrate accumulation when using AD. While lactate decreased, pyruvate remained stable, and ketogenesis was boosted during dialysis. Acetylcarnitine and myo-inositol were reduced during dialysis, while glycerol remained constant. Lastly, glutamate and glutarate decreased due to the inhibition of amino acidic degradation. This study raises new hypotheses that need further investigation to understand better the biochemical processes that dialysis and the different dialysate buffers induce in the patient’s metabolism.