Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, Stem Cell Research and Therapy, 1(13), 2022

DOI: 10.1186/s13287-022-03182-7

Links

Tools

Export citation

Search in Google Scholar

Blood donor biobank and HLA imputation as a resource for HLA homozygous cells for therapeutic and research use

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Allogeneic therapeutic cells may be rejected if they express HLA alleles not found in the recipient. As finding cell donors with a full HLA match to a recipient requires vast donor pools, the use of HLA homozygous cells has been suggested as an alternative. HLA homozygous cells should be well tolerated by those who carry at least one copy of donor HLA alleles. HLA-A-B homozygotes could be valuable for HLA-matched thrombocyte products. We evaluated the feasibility of blood donor biobank and HLA imputation for the identification of potential cell donors homozygous for HLA alleles. Methods We imputed HLA-A, -B, -C, -DRB1, -DQA1, -DQB1 and -DPB1 alleles from genotypes of 20,737 Finnish blood donors in the Blood Service Biobank. We confirmed homozygosity by sequencing HLA alleles in 30 samples and by examining 36,161 MHC-located polymorphic DNA markers. Results Three hundred and seventeen individuals (1.5%), representing 41 different haplotypes, were found to be homozygous for HLA-A, -B, -C, -DRB1, -DQA1 and -DQB1 alleles. Ten most frequent haplotypes homozygous for HLA-A to -DQB1 were HLA-compatible with 49.5%, and three most frequent homozygotes to 30.4% of the Finnish population. Ten most frequent HLA-A-B homozygotes were compatible with 75.3%, and three most frequent haplotypes to 42.6% of the Finnish population. HLA homozygotes had a low level of heterozygosity in MHC-located DNA markers, in particular in HLA haplotypes enriched in Finland. Conclusions The present study shows that HLA imputation in a blood donor biobank of reasonable size can be used to identify HLA homozygous blood donors suitable for cell therapy, HLA-typed thrombocytes and research. The homozygotes were HLA-compatible with a large fraction of the Finnish population. Regular blood donors reported to have positive attitude to research donation appear a good option for these purposes. Differences in population frequencies of HLA haplotypes emphasize the need for population-specific collections of HLA homozygous samples.