Published in

MDPI, Nanomaterials, 20(12), p. 3571, 2022

DOI: 10.3390/nano12203571

Links

Tools

Export citation

Search in Google Scholar

Strain Relaxation of InAs Quantum Dots on Misoriented InAlAs(111) Metamorphic Substrates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We investigate in detail the role of strain relaxation and capping overgrowth in the self-assembly of InAs quantum dots by droplet epitaxy. InAs quantum dots were realized on an In0.6Al0.4As metamorphic buffer layer grown on a GaAs(111)A misoriented substrate. The comparison between the quantum electronic calculations of the optical transitions and the emission properties of the quantum dots highlights the presence of a strong quenching of the emission from larger quantum dots. Detailed analysis of the surface morphology during the capping procedure show the presence of a critical size over which the quantum dots are plastically relaxed.