Published in

American Association for the Advancement of Science, Science Advances, 41(8), 2022

DOI: 10.1126/sciadv.abm8191

Links

Tools

Export citation

Search in Google Scholar

Extreme variability in atmospheric oxygen levels in the late Precambrian

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Mapping the history of atmospheric O 2 during the late Precambrian is vital for evaluating potential links to animal evolution. Ancient O 2 levels are often inferred from geochemical analyses of marine sediments, leading to the assumption that the Earth experienced a stepwise increase in atmospheric O 2 during the Neoproterozoic. However, the nature of this hypothesized oxygenation event remains unknown, with suggestions of a more dynamic O 2 history in the oceans and major uncertainty over any direct connection between the marine realm and atmospheric O 2 . Here, we present a continuous quantitative reconstruction of atmospheric O 2 over the past 1.5 billion years using an isotope mass balance approach that combines bulk geochemistry and tectonic recycling rate calculations. We predict that atmospheric O 2 levels during the Neoproterozoic oscillated between ~1 and ~50% of the present atmospheric level. We conclude that there was no simple unidirectional rise in atmospheric O 2 during the Neoproterozoic, and the first animals evolved against a backdrop of extreme O 2 variability.