Published in

MDPI, Fire, 5(5), p. 165, 2022

DOI: 10.3390/fire5050165

Links

Tools

Export citation

Search in Google Scholar

On the Large Eddy Simulation Modelling of Water Suppression Systems Droplet Impact and Coverage Area

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this article, a collective database from validated numerical simulation has been established to study the suppression effects of water-based suppression systems under a single-compartment fire scenario at various suppression configurations and fire locations. Five fuel locations along the axis between the centre and corner of the room were configurated to dynamically analyse how the horizontal distance between the nozzle and fuel pan affects the heat release rate (HRR), temperature cooling phenomena at different heights and also the velocity profile. Throughout the fuel pan relocations, the water-mist system has achieved an average suppression time of 25 s for all the locations, it was found that the water mist system can effectively control the fire under 200 °C that is distanced over 2 m spanwise displacement from the nozzle against the fire, while the sprinkler has exhibited an excellent fuel surface cooling effect due to large momentum and heat capacity within the coverage area with an average suppression time of 50 s. The results of this study have further explored the spray coverage and droplet penetrability of different suppression systems at different locations corresponding to the fire source, and the quantitative assessment of fuel locations could also contribute to the future development of performance-based fire safety designs.