Published in

SSRN Electronic Journal, 2021

DOI: 10.2139/ssrn.3980406

Cambridge University Press, International Journal of Microwave and Wireless Technologies, p. 1-11, 2022

DOI: 10.1017/s1759078722001039

Links

Tools

Export citation

Search in Google Scholar

Impact of dielectric substrates on chipless RFID tag performance

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract A five-slot hexagonal shape chipless RFID tag is designed, simulated, and manufactured on FR4 substrate. The designed tag's copper geometry was replicated on a wide range of dielectric substrate to quantify the impact on resonance quality factor (RQF) and resonating frequencies. The tag's performance was assessed in three configurations. First, a hexagonal shape tag's radar cross section (RCS) was studied over different dielectric substrates. The various dielectric substrate effects were investigated over the maximum read range, resonant frequencies and RQF. In the second evaluation, the physical geometry of the tag was adjusted to achieve the spectral signatures in 2–7 GHz frequency band with high RQF. In step three, the optimized tag geometry was manufactured on FR4, Roger Duroid 5880, and polyethylene naphthalate (PEN) substrates. Denford milling machine for PCB engraving and inkjet printing for silver nanoparticles deposition were used for tags manufacturing. During tag manufacturing, copper and silver were used as conducting materials for RCS backscattering. The tag RCS response was measured by vector network analyzer with bi-static antenna setup. The analysis of different dielectric substrate provides a pathway of designing a novel substrate by using various nanomaterials.