Published in

Association for Computing Machinery (ACM), ACM Transactions on Information Systems, 3(41), p. 1-28, 2023

DOI: 10.1145/3568396

Links

Tools

Export citation

Search in Google Scholar

Towards Robust Neural Graph Collaborative Filtering via Structure Denoising and Embedding Perturbation

Journal article published in 2023 by Haibo Ye ORCID, Xinjie Li ORCID, Yuan Yao ORCID, Hanghang Tong ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Neural graph collaborative filtering has received great recent attention due to its power of encoding the high-order neighborhood via the backbone graph neural networks. However, their robustness against noisy user-item interactions remains largely unexplored. Existing work on robust collaborative filtering mainly improves the robustness by denoising the graph structure, while recent progress in other fields has shown that directly adding adversarial perturbations in the embedding space can significantly improve the model robustness. In this work, we propose to improve the robustness of neural graph collaborative filtering via both denoising in the structure space and perturbing in the embedding space. Specifically, in the structure space, we measure the reliability of interactions and further use it to affect the message propagation process of the backbone graph neural networks; in the embedding space, we add in-distribution perturbations by mimicking the behavior of adversarial attacks and further combine it with contrastive learning to improve the performance. Extensive experiments have been conducted on four benchmark datasets to evaluate the effectiveness and efficiency of the proposed approach. The results demonstrate that the proposed approach outperforms the recent neural graph collaborative filtering methods especially when there are injected noisy interactions in the training data.