Published in

MDPI, Journal of Fungi, 10(8), p. 1091, 2022

DOI: 10.3390/jof8101091

Links

Tools

Export citation

Search in Google Scholar

A Whole Genome Sequencing-Based Approach to Track down Genomic Variants in Itraconazole-Resistant Species of Aspergillus from Iran

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The antifungal resistance in non-fumigatus Aspergillus spp., as well as Aspergillus fumigatus, poses a major therapeutic challenge which affects the entire healthcare community. Mutation occurrence of cyp51 gene paralogs is the major cause of azole resistance in Aspergillus spp. To obtain a full map of genomic changes, an accurate scan of the entire length of the Aspergillus genome is necessary. In this study, using whole genome sequencing (WGS) technique, we evaluated the mutation in cyp51A, cyp51B, Cdr1B, AtrR, Hmg1, HapE and FfmA genes in different clinical isolates of Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Aspergillus welwitschiae and Aspergillus terreus which responded to minimum inhibitory concentrations of itraconazole above 16 µg mL−1. We found different nonsynonymous mutations in the cyp51A, cyp51B, Cdr1B, AtrR, Hmg1, HapE and FfmA gene loci. According to our findings, Aspergillus species isolated from different parts of the world may represent different pattern of resistance mechanisms which may be revealed by WGS.