Published in

MDPI, Applied Sciences, 20(12), p. 10507, 2022

DOI: 10.3390/app122010507

Links

Tools

Export citation

Search in Google Scholar

Consecutive and Effective Facial Masking Using Image-Based Bone Sensing for Remote Medicine Education

Journal article published in 2022 by Sinan Chen ORCID, Masahide Nakamura, Kenji Sekiguchi ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Unlike masking human faces from images, facial masking in real-time, frame by frame from a video stream, presents technical challenges related to various factors such as camera-to-human distance, head direction, and mosaic schemes. In many existing studies, expensive equipment and huge computational resources are strongly required, and it is not easy to effectively realize real-time facial masking with a simpler approach. This study aims to develop a secure streaming system to support remote medicine education and to quantitatively evaluate consecutive and effective facial masking using image-based bone sensing. Our key idea is to use the facial feature of bone sensing instead of general face recognition techniques to perform facial masking from the video stream. We use a general-purpose computer and a USB fixed-point camera to implement the eye line mosaic and face mosaic. We quantitatively evaluate the results of facial masking at different distances and human head orientations using bone sensing technology and a depth camera. we compare the results of a similar approach for face recognition with those of bone sensing. As the main results, consecutive face masking using bone sensing is unaffected by distance and head orientation, and the variation width of the mosaic area is stable within around 30% of the target area. However, about three-fourths of the results using conventional face recognition were unable to mask their faces consecutively.