American Association of Immunologists, The Journal of Immunology, 9(209), p. 1691-1702, 2022
Full text: Download
Abstract Lymphocytic choriomeningitis virus (LCMV) is the prototypic arenavirus and a natural mouse pathogen. LCMV-Armstrong, an acutely resolved strain, and LCMV-clone 13, a mutant that establishes chronic infection, have provided contrasting infection models that continue to inform the fundamental biology of T cell differentiation, regulation of exhaustion, and response to checkpoint blockade. In this study, we report the isolation and characterization of LCMV-Minnesota (LCMV-MN), which was naturally transmitted to laboratory mice upon cohousing with pet shop mice and shares 80–95% amino acid homology with previously characterized LCMV strains. Infection of laboratory mice with purified LCMV-MN resulted in viral persistence that was intermediate between LCMV-Armstrong and -clone 13, with widely disseminated viral replication and viremia that was controlled within 15–30 d, unless CD4 T cells were depleted prior to infection. LCMV-MN–responding CD8+ T cells biased differentiation toward the recently described programmed death-1 (PD-1)+CXCR5+Tim-3lo stemlike CD8+ T cell population (also referred to as progenitor exhausted T cells) that effectuates responses to PD-1 blockade checkpoint inhibition, a therapy that rejuvenates responses against chronic infections and cancer. This subset resembled previously characterized PD-1+TCF1+ stemlike CD8+ T cells by transcriptional, phenotypic, and functional assays, yet was atypically abundant. LCMV-MN may provide a tool to better understand the breadth of immune responses in different settings of chronic Ag stimulation as well as the ontogeny of progenitor exhausted T cells and the regulation of responsiveness to PD-1 blockade.