Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Diagnostics, 10(12), p. 2539, 2022

DOI: 10.3390/diagnostics12102539

Links

Tools

Export citation

Search in Google Scholar

Probabilistic Approach to COVID-19 Data Analysis and Forecasting Future Outbreaks Using a Multi-Layer Perceptron Neural Network

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The present outbreak of COVID-19 is a worldwide calamity for healthcare infrastructures. On a daily basis, a fresh batch of perplexing datasets on the numbers of positive and negative cases, individuals admitted to hospitals, mortality, hospital beds occupied, ventilation shortages, and so on is published. Infections have risen sharply in recent weeks, corresponding with the discovery of a new variant from South Africa (B.1.1.529 also known as Omicron). The early detection of dangerous situations and forecasting techniques is important to prevent the spread of disease and restart economic activities quickly and safely. In this paper, we used weekly mobility data to analyze the current situation in countries worldwide. A methodology for the statistical analysis of the current situation as well as for forecasting future outbreaks is presented in this paper in terms of deaths caused by COVID-19. Our method is evaluated with a multi-layer perceptron neural network (MLPNN), which is a deep learning model, to develop a predictive framework. Furthermore, the Case Fatality Ratio (CFR), Cronbach’s alpha, and other metrics were computed to analyze the performance of the forecasting. The MLPNN is shown to have the best outcomes in forecasting the statistics for infected patients and deaths in selected regions. This research also provides an in-depth analysis of the emerging COVID-19 variants, challenges, and issues that must be addressed in order to prevent future outbreaks.