Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Physics of Plasmas, 10(29), p. 102302, 2022

DOI: 10.1063/5.0104505

Links

Tools

Export citation

Search in Google Scholar

Particle-in-cell simulations on parametric instability of the lower hybrid wave

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Lower hybrid (LH) wave is an effective tool for current drive (CD) on tokamak devices. Parametric instability (PI) has always been a troubling phenomenon decreasing the lower hybrid current drive efficiency. In this work, the PI behavior of the LH waves for plasma parameters on the Experimental Advanced Superconducting Tokamak is investigated via first-principle simulation with a two-dimensional full-particle-in-cell method. The PI processes where an LH pump wave decays into another LH sideband and a low-frequency mode [ion sound quasi-mode (ISQM) or ion cyclotron quasi-mode (ICQM)] are observed in simulations. The ICQM-type and ISQM-type decay channels dominate, respectively, in the high- and low-plasma regimes while appearing simultaneously in the intermediate regime, which agrees well with the theoretical prediction by solving the parametric dispersion relation. In addition, for both the decay channels, their LH sidebands are excited with a wide range of parallel refractive index [Formula: see text] up to 30.0, which can resonantly interact with thermal electrons. The resulting electron heating can be enhanced due to overlap of resonances between the electrons and sidebands. Such electron heating not only dissipates the wave energy in the edge plasma but produces a significant portion of fast electrons, which may seriously affect tokamak discharges. The ion cyclotron heating due to the ICQMs is also observed in simulations.