Full text: Download
It is known that phase conjugation technique is achieved by the nonlinearity of materials, and widely adopted in various applications, such as high-resolution imaging, signal amplification, and target detecting. Here, we have proposed a field-enhancement method for the degenerate four wave mixing (FWM) for phase conjugation purpose. In this method, a thin film waveguide with nonlinear property is utilized to confine and guide the pumps, achieving the enhanced FWM within a flexible structure. Compared to existing degenerate FWM methods, three merits are introduced by the proposed pump-guided nonlinear film. First, the pump is confined and guided in the nonlinear waveguide, and the pump energy is concentrated to achieve high power level of the phase-conjugated signals. Second, less pump energy leaks out from the thin film, with less interference to the phase-conjugated signals. The last one is that pump-guided film can be engineered into flexible shapes for different practical applications. Based on these advantages, the phase conjugation property is numerically verified for high-resolution image reconstruction, even with damping of waveguide or in the presence of the metallic particles and the dielectric blocks.