Published in

MDPI, Materials, 20(15), p. 7372, 2022

DOI: 10.3390/ma15207372

Links

Tools

Export citation

Search in Google Scholar

Destabilization of the Charge Density Wave and the Absence of Superconductivity in ScV6Sn6 under High Pressures up to 11 GPa

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

RV6Sn6 (R = Sc, Y, or rare earth) is a new family of kagome metals that have a similar vanadium structural motif as AV3Sb5 (A = K, Rb, Cs) compounds. Unlike AV3Sb5, ScV6Sn6 is the only compound among the series of RV6Sn6 that displays a charge density wave (CDW) order at ambient pressure, yet it shows no superconductivity (SC) at low temperatures. Here, we perform a high-pressure transport study on the ScV6Sn6 single crystal to track the evolutions of the CDW transition and to explore possible SC. In contrast to AV3Sb5 compounds, the CDW order of ScV6Sn6 can be suppressed completely by a pressure of about 2.4 GPa, but no SC is detected down to 40 mK at 2.35 GPa and 1.5 K up to 11 GPa. Moreover, we observed that the resistivity anomaly around the CDW transition undergoes an obvious change at ~2.04 GPa before it vanishes completely. The present work highlights a distinct relationship between CDW and SC in ScV6Sn6 in comparison with the well-studied AV3Sb5.