Published in

MDPI, Polymers, 21(14), p. 4499, 2022

DOI: 10.3390/polym14214499

Links

Tools

Export citation

Search in Google Scholar

Micromechanical Deformation Processes and Failure of PBS Based Composites Containing Ultra-Short Cellulosic Fibers for Injection Molding Applications

Journal article published in 2022 by Laura Aliotta ORCID, Mattia Gasenge, Vito Gigante, Andrea Lazzeri ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The use of biobased thermoplastic polymers has gained great attention in the last years as a potential alternative to fossil-based thermoplastic polymers. Biobased polymers in fact offer advantages not only in terms of reduced dependence on fossil resources but they also lower the CO2 footprint in accordance with sustainability and climate protection goals. To improve the properties of these materials, reinforcement with biobased fibers is a promising solution; however, it must be kept in mind that the fibers aspect ratio and the interfacial adhesion between the reinforcement and the matrix plays an important role influencing both physical and mechanical properties of the biocomposites. In this paper, the possibility of producing composites by injection molding, based on polybutylene succinate and ultra-short cellulosic fibers has been explored as a potential biobased solution. Thermo-mechanical properties of the composites were investigated, paying particular attention to the local micromechanical deformation processes, investigated by dilatometric tests, and failure mechanisms. Analytical models were also applied to predict the elastic and flexural modulus and the interfacial properties of the biocomposites. Good results were achieved, demonstrating the that this class of biocomposite can be exploited. Compared to pure PBS, the composites with 30 wt.% of cellulose fibers increased the Young’s modulus by 154%, the flexural modulus by 130% and the heat deflection temperature by 9%.