Dissemin is shutting down on January 1st, 2025

Published in

Wildlife Information Liaison Development Society, Journal of Threatened Taxa, 10(14), p. 21976-21991, 2022

DOI: 10.11609/jott.7979.14.10.21976-21991

Links

Tools

Export citation

Search in Google Scholar

Environmental factors affecting water mites (Acari: Hydrachnidia) assemblage in streams, Mangde Chhu basin, central Bhutan

Journal article published in 2022 by Mer Man Gurung ORCID, Cheten Dorji ORCID, Dhan B. Gurung ORCID, Harry Smit ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Water mites were sampled from 15 tributary streams of Mangde Chhu river in Zhemgang and Trongsa districts, Central Bhutan in pre-monsoon (April–May) and post-monsoon (October–November) of 2021. A total of 802 individuals were collected belonging to seven families and 15 genera. The accumulation curve suggests that the sampling efforts were adequate to give a proper overview of genera composition for elevations 500–2,700 m. Eleven genera—Aturus, Kongsbergia, Woolastookia, Atractides, Hygrobates, Lebertia, Piona, Sperchonopsis, Monatractides, Pseudotorrenticola and Testudacarus—and five families—Aturidae, Hygrobatidae, Lebertiidae, Pionidae, and Protziinae—are new records for Bhutan. Independent sample t-tests of genera richness (t, (26) = 0.244, p = 0.809); genera evenness (t, (26) = 0.735, p = 0.469); Shannon diversity index (t, (26) = 0.315, p = 0.755) and dominance (t, (26) = -0.335, p = 0.741) showed no significant differences between pre- and post-monsoon assemblages. Species abundance was also not significantly different (t, (28) = -0.976, p = 0.330). Principal component analysis indicated that the diversity of water mites is negatively associated with several environmental variables including chloride (r = -0.617), ammonia (r = -0.603), magnesium hardness (r = -0.649), total hardness (r = -0.509), temperature (r = -0.556), salinity (r = -0.553), total dissolved solids (r = -0.509) and electrical conductivity (r = -0.464). Diversity was positively correlated with altitude, mainly caused by the higher Palaearctic genera diversity. Similarly, Pearson’s correlation test showed that there was significant negative correlation between mite abundance and the water physio-chemical parameters salinity (r = -0.574, p = 0.032), electrical conductivity (r = -0.536, p = 0.048), total dissolved solids (r = -0.534, p = 0.049), total hardness (r = -0.621, p = 0.018), and chloride concentration (r = -0.545, p = 0.036), indicating sensitivity of water mites to pollution.