Published in

arXiv, 2021

DOI: 10.48550/arxiv.2110.06728

American Physical Society, Physical Review Letters, 18(129), 2022

DOI: 10.1103/physrevlett.129.187203

Links

Tools

Export citation

Search in Google Scholar

Experimental Evidence of t2g Electron-Gas Rashba Interaction Induced by Asymmetric Orbital Hybridization

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We report the control of Rashba spin-orbit interaction by tuning asymmetric hybridization between Ti-orbitals at the LaAlO3/SrTiO3 interface. This asymmetric orbital hybridization is modulated by introducing a LaFeO3 layer between LaAlO3 and SrTiO3, which alters the Ti-O lattice polarization and traps interfacial charge carriers, resulting in a large Rashba spin-orbit effect at the interface in the absence of an external bias. This observation is verified through high-resolution electron microscopy, magneto-transport and first-principles calculations. Our results open hitherto unexplored avenues of controlling Rashba interaction to design next-generation spin-orbitronics.