Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Metals, 11(12), p. 1824, 2022

DOI: 10.3390/met12111824

Links

Tools

Export citation

Search in Google Scholar

Mechanical Properties and Microstructural Evolution of Ti-25Nb-6Zr Alloy Fabricated by Spark Plasma Sintering at Different Temperatures

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

High-energy ball milling and spark plasma sintering (SPS) are used to create high-strength Ti-25Nb-6Zr biomedical alloys with β structures. The Ti-25Nb-6Zr alloy microstructure and mechanical properties were examined as a function of the sintering temperatures. The results showed that as the sintering temperature was raised, the densification process was expedited, and the comprehensive mechanical characteristics increased at first, then dropped slightly. Moreover, under high temperatures, the fracture morphology of the Ti-25Nb-6Zr biomedical alloys exhibited more dimples, indicating enhanced plasticity of the material. Evaluating the mechanical properties of the Ti-25Nb-6Zr biomedical alloy sintered at 1623 K indicated a high compressive strength of 1678.4 ± 5 MPa and an elongation of 12.4 ± 0.5%. The strengthening mechanisms are discussed in terms of the formation and distribution of bcc-Ti in the matrix as well as the homogeneous distribution of Nb and Zr. This research presents a new method for fabricating Ti-25Nb-6Zr biomedical alloys with high strength and low modulus values. The theoretical grounds for the development of high-performance Ti-Nb-Zr alloys will be laid by detailed research of this technology and its strengthening mechanisms.