Published in

American Institute of Physics, Review of Scientific Instruments, 10(93), p. 103547, 2022

DOI: 10.1063/5.0101857

Links

Tools

Export citation

Search in Google Scholar

Applications of machine learning to a compact magnetic spectrometer for high repetition rate, laser-driven particle acceleration

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Accurately and rapidly diagnosing laser–plasma interactions is often difficult due to the time-intensive nature of the analysis and will only become more so with the rise of high repetition rate lasers and the desire to implement feedback on a commensurate timescale. Diagnostic analysis employing machine learning techniques can help address this problem while maintaining a high degree of accuracy. We report on the application of machine learning to the analysis of a scintillator-based electron spectrometer for experiments on high intensity, laser–plasma interactions at the Colorado State University Advanced Lasers and Extreme Photonics facility. Our approach utilizes a neural network trained on synthetic data and tested on experiments to extract the accelerated electron temperature. By leveraging transfer learning, we demonstrate an improvement in the neural network accuracy, decreasing the network error by 50%.