Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Yeast, 12(38), p. 634-645, 2021

DOI: 10.1002/yea.3672

Links

Tools

Export citation

Search in Google Scholar

Synergic activity of oligostyrylbenzenes with amphotericin B against Candida tropicalis biofilms

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAntimicrobial drug resistance is a serious challenge in clinical settings worldwide, with biofilm formation having been associated with this problem. In the present study, the synergism of oligostyrylbenzene (OSB) compounds in combination with amphotericin B (AmB) against Candida tropicalis biofilms was investigated. In addition, the toxicity in human blood cells was determined. Synergistic combinations of OSBs and AmB were evaluated to consider future effects of OSBs in vivo. The checkerboard microdilution method was used to study the interactions of one anionic (1) and two cationic (2 and 3) OSBs with AmB. We investigated the effects of OSBs on reactive oxygen species (ROS) and the levels of the reactive nitrogen intermediates (RNIs). The cellular stress affected biofilm growth through an accumulation of ROS and RNI, at synergistic concentrations of OSBs and AmB. Furthermore, significant surface topography differences were noted upon treatment with the OSB 2/AmB combination, using confocal laser scanning microscopy in conjunction with the image analysis software COMSTAT. The results revealed a low toxicity to leukocytes and red blood cells at synergistic combinations of cationic OSBs with AmB. These findings demonstrated the antibiofilm effects of OSBs and the synergism of AmB with cationic OSBs against biofilms of C. tropicalis for the first time.