Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Processes, 11(10), p. 2266, 2022

DOI: 10.3390/pr10112266

Links

Tools

Export citation

Search in Google Scholar

Waste Derived Graphene Oxide-ZnO: An Efficient Photocatalyst for Rhodamine 6G

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The catalyst’s photocatalytic activity under sunlight was tested using graphene oxide (GO) from plant cellulose waste and modified by ZnO nanomaterial. The absorbance of the dye’s solution (Rhodamine 6G) was recorded as λmax = 555 nm at regular time intervals. The degradation kinetics of rhodamine was evaluated by applying first-order integrated rate expression, kt = −ln (C/C0). The half-life (t1/2), the rate constant (k), and the time constant τ (Tau) have been obtained by the above rate expression. The rate constant of the reactions carried out with the different materials was calculated and the values obtained were: k_ZnO =1.574 × 10−2, k_GO =1.01 × 10−2 and k_C-GO-ZnO = 4.7 × 10−3 min−1. The degradation efficiency presented by GO, ZnO and GO-ZnO catalysts was 66.67, 70.84, and 70.07%, respectively. FTIR spectroscopy was used to investigate the interactions between the catalyst and the dye. To the best of our knowledge, waste-derived GO-ZnO has not been previously reported for the photocatalytic degradation of Rhodamine 6G.