Published in

American Institute of Physics, Physics of Plasmas, 11(29), p. 112701, 2022

DOI: 10.1063/5.0097285

Links

Tools

Export citation

Search in Google Scholar

Interaction of multiple shocks in planar targets with a ramp-pulse ablation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Interaction of multiple shocks plays a critical role in setting up an adiabatic compression of megabar pressure in nanosecond timescale in inertial confinement fusion. In this paper, we present observations of dynamic behavior and interaction of multiple shocks in polystyrene (CH) planar targets driven by a single-ramp pulse of 2.5 ns at the SG-II laser facility with a specially designed velocity interferometer system for any reflector (VISAR). A maximum pressure of [Formula: see text] and a mass density of [Formula: see text] are measured, respectively. Radiation-hydrodynamic simulations reveal the interaction process of the multiple shocks and are in good agreement with the measurements. A theoretical model is proposed to invert the space-time history of the shock generation with the VISAR data. Moreover, an optimized double-slope ramp pulse is proposed for further compression experiments. The improved multiple-shock coalescence is expected to effectively enhance both density and velocity for an initial compression of the CH target.