Published in

Elsevier, Carbohydrate Research, (429), p. 123-127, 2016

DOI: 10.1016/j.carres.2016.01.004

Links

Tools

Export citation

Search in Google Scholar

Evaluation of monovalent and multivalent iminosugars to modulate candida albicans β-1,2-mannosyltransferase activities

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

β-1,2-Linked oligomannosides substitute the cell wall of numerous yeast species. Several of those including Candida albicans may cause severe infections associated with high rates of morbidity and mortality, especially in immunocompromised patients. β-1,2-Mannosides are known to be involved in the pathogenic process and to elicit an immune response from the host. In C. albicans, the synthesis of β-mannosides is under the control of a family of nine genes coding for putative β-mannosyltransferases. Two of them, CaBmt1 and CaBmt3, have been shown to initiate and prime the elongation of the β-mannosides on the cell-wall mannan core. In the present study, we have assessed the modulating activities of monovalent and multivalent iminosugar analogs on these enzymes in order to control the enzymatic bio-synthesis of β-mannosides. We have identified a monovalent deoxynojirimycin (DNJ) derivative that inhibits the CaBmt1-catalyzed initiating activity, and mono-, tetra- and polyvalent deoxymannojirimycin (DMJ) that modulate the CaBmt1 activity toward the formation of a single major product. Analysis of the aggregating properties of the multivalent iminosugars showed their ability to elicit clusterization of both CaBmt1 and CaBmt3, without affecting their activity. These results suggest promising roles for multivalent iminosugars as controlling agents for the biosynthesis of β-1,2 mannosides and for monovalent DNJ derivative as a first target for the design of future β-mannosyltransferase inhibitors.