Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 20(103), p. 7747-7752, 2006

DOI: 10.1073/pnas.0509121103

Links

Tools

Export citation

Search in Google Scholar

Light chain inclusion permits terminal B cell differentiation and does not necessarily result in autoreactivity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mice in which the Jkappa cluster was replaced with a VkappaJkappa rearranged gene were studied. More than 90% of B cells from homozygous mutant mice expressed the transgenic kappa chain but showed a slightly reduced level of kappa transcripts compared with WT B lymphocytes. Light chain inclusion was apparent in 10% of B cells from these mice and raised 25% in hemizygous mice with a still lower expression of the knockin kappa chain. Beyond the rules of clonal selection, peripheral B cells developed in such animals, with included cells being activated and differentiating into class-switched or antibody-secreting cells. The high amount of included mature B cells was associated with an increase of hybrid kappa/lambda immunoglobulins but not with the increased prevalence of autoantibodies. Altogether, these data suggest that light chain exclusion prevalent in normal B cells mostly results from ordered rearrangements and stochastic mechanisms but is neither tightly ensured by a stringent cell selection process nor absolutely required for normal B cell function.