Published in

BMJ Publishing Group, British Journal of Ophthalmology, p. bjophthalmol-2021-320356, 2022

DOI: 10.1136/bjo-2021-320356

Links

Tools

Export citation

Search in Google Scholar

Characterising collateral vessels in eyes with branch retinal vein occlusions using widefield swept-source optical coherence tomography angiography

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background/aimsTo characterise the morphology, location and functional significance of both macular and extramacular collateral vessels (CVs) in patients with a history of branch retinal vein occlusion (BRVO) using widefield swept-source optical coherence tomography angiography (WF SS OCTA).MethodsPatients with a history of BRVO underwent WF SS OCTA testing to acquire 12×12 mm images, which were evaluated for CVs and non-perfusion area (NPA). Region of interest analysis of individual CVs was performed to identify correlations between CV size, depth and retinal location. Mixed effects multivariate regression analyses of factors associated with NPA and visual acuity (VA) were performed.ResultsFifty-five CVs were identified in 28 BRVO eyes from 27 patients. CVs were identified in 42.9% (12/28) of eyes with a history of BRVO, and of these, 45.5% (25/55) were extramacular. The majority of CVs (87.3%, 48/55) coursed through both the superficial and the deep capillary plexus (DCP), while a subset (12.7%, 7/55) were strictly superficial. No CVs were found to course strictly through the DCP alone. CV depth increased with distance from the optic disc (p=0.011) and CV size increased with distance from the fovea (p=0.005). There were no statistically significant associations between CVs and NPA, or between CVs and VA.ConclusionsWF SS OCTA revealed that a large fraction of CVs that form after BRVO are extramacular, and the morphology of CVs varies as a function of retinal location. Depth-resolved study of CVs may offer valuable insights on the pathophysiological mechanisms leading to the development of macular oedema.