Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nanomaterials, 21(12), p. 3861, 2022

DOI: 10.3390/nano12213861

Links

Tools

Export citation

Search in Google Scholar

Anisotropic Thermal Conductivity of Inkjet-Printed 2D Crystal Films: Role of the Microstructure and Interfaces

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Two-dimensional (2D) materials are uniquely suited for highly anisotropic thermal transport, which is important in thermoelectrics, thermal barrier coatings, and heat spreaders. Solution-processed 2D materials are attractive for simple, low-cost, and large-scale fabrication of devices on, virtually, any substrate. However, to date, there are only few reports with contrasting results on the thermal conductivity of graphene films, while thermal transport has been hardly measured for other types of solution-processed 2D material films. In this work, inkjet-printed graphene, h-BN and MoS2 films are demonstrated with thermal conductivities of ∼10 Wm−1K−1 and ∼0.3 Wm−1K−1 along and across the basal plane, respectively, giving rise to an anisotropy of ∼30, hardly dependent on the material type and annealing treatment. First-principles calculations indicate that portion of the phonon spectrum is cut-off by the quality of the thermal contact for transport along the plane, yet the ultra-low conductivity across the plane is associated with high-transmissivity interfaces. These findings can drive the design of highly anisotropic 2D material films for heat management applications.