American Institute of Physics, Review of Scientific Instruments, 11(93), p. 113520, 2022
DOI: 10.1063/5.0101884
Full text: Download
The Imaging Spectroscopy Snout (ISS) used at the National Ignition Facility is able to simultaneously collect neutron pinhole images, 1D spatially resolved x-ray spectra, and time resolved x-ray pinhole images. To measure the x-ray spectra, the ISS can be equipped with up to four different transmission crystals, each offering different energy ranges from ∼7.5 to ∼12 keV and different resolutions. Characterizing and calibrating such instruments is of paramount importance in order to extract meaningful results from experiments. More specifically, we characterized different ISS transmission-type alpha-Quartz crystals by measuring their responses as a function of photon energy, from which we inferred the angle-integrated reflectivity for each crystal’s working reflections. These measurements were made at the Lawrence Livermore National Laboratory calibration station dedicated to the characterization of x-ray spectrometers. The sources used covered a wide x-ray range—from a few to 30 keV; the source diameter was ∼0.6 mm. The experimental results are discussed alongside theoretical calculations using the pyTTE model.