Dissemin is shutting down on January 1st, 2025

Published in

American Society for Microbiology, Journal of Virology, 10(80), p. 5032-5040, 2006

DOI: 10.1128/jvi.80.10.5032-5040.2006

Links

Tools

Export citation

Search in Google Scholar

Alpha and Lambda Interferon Together Mediate Suppression of CD4 T Cells Induced by Respiratory Syncytial Virus

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The mechanism by which respiratory syncytial virus (RSV) suppresses T-cell proliferation to itself and other antigens is poorly understood. We used monocyte-derived dendritic cells (MDDC) and CD4 T cells and measured [ 3 H]thymidine incorporation to determine the factors responsible for RSV-induced T-cell suppression. These two cell types were sufficient for RSV-induced suppression of T-cell proliferation in response to cytomegalovirus or Staphylococcus enterotoxin B. Suppressive activity was transferable with supernatants from RSV-infected MDDC and was not due to transfer of live virus or RSV F (fusion) protein. Supernatants from RSV-infected MDDC, but not MDDC exposed to UV-killed RSV or mock conditions, contained alpha interferon (IFN-α; median, 43 pg/ml) and IFN-λ (approximately 1 to 20 ng/ml). Neutralization of IFN-α with monoclonal antibody (MAb) against one of its receptor chains, IFNAR2, or of IFN-λ with MAb against either of its receptor chains, IFN-λR1 (interleukin 28R [IL-28R]) or IL-10R2, had a modest effect. In contrast, blocking the two receptors together markedly reduced or completely blocked the RSV-induced suppression of CD4 T-cell proliferation. Defining the mechanism of RSV-induced suppression may guide vaccine design and provide insight into previously uncharacterized human T-cell responses and activities of interferons.