Published in

MDPI, Batteries, 11(8), p. 221, 2022

DOI: 10.3390/batteries8110221

Links

Tools

Export citation

Search in Google Scholar

Importance of Continuous and Simultaneous Monitoring of Both Electrode Voltages during Discharge/Charge Battery Tests: Application to Zn-Based Batteries

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Two different Zn-based batteries are tested, simultaneously recording the voltage of the negative and positive electrodes during the discharge/charge processes to evidence the advantages of using a three-electrode cell, including a pseudo-reference electrode, with respect to the normally applied two electrodes system. The three-electrode cell allows us to identify in each moment which electrode reveals unexpected events during a battery test and thus to act on it accordingly. In this work, alkaline Zn/Bi2O3 and Zn/air batteries, including a pseudo-reference electrode, are subjected to different galvanostatic discharge/charge tests, highlighting several unforeseen changes and failures in both negative and positive electrodes. Thus, the usefulness of using a three-electrodes system in Zn-based batteries is revealed because it allows us to explain what the cause of the battery failure was and, if necessary, to act immediately. Finally, Spectroscopic Impedance measurements are also applied to a specific case of the Zn/Bi2O3 battery using the same three-electrode cell.