Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Life, 11(12), p. 1816, 2022

DOI: 10.3390/life12111816

Links

Tools

Export citation

Search in Google Scholar

Application of Potassium after Waterlogging Improves Quality and Productivity of Soybean Seeds

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Potassium (K) improves the stress tolerance of crop plants, which varies on the timing of K application and crop varieties. Soybean is a promising crop that can easily fit with the cropping pattern during kharif I season, when water logging occurs due to sudden rain. Therefore, an experiment was conducted to determine the effect of K management on the productivity and seed quality of soybean under normal and waterlogged conditions. The treatments comprised three factors, namely soybean genotypes (BU Soybean-1 and BU Soybean-2), waterlogging (WL) (control and WL for 4 days at the flowering stage (FS)), and K application (full dose as basal and 50% as basal +50% as top dress after termination of the flooding). The trial was laid out in a randomized complete block design with three replications. Findings revealed that BU Soybean-1 produced a higher number of pods and seeds pod−1 under control conditions with basal application of K. On the other hand, BU Soybean-2 produced taller plants and heavier grain, improving grain and straw yield under WL conditions when K was top dressed. The varieties absorbed a higher amount of nitrogen, phosphorus, and potassium under control conditions compared to WL when K was top dressed. Similarly, the seed protein content of both varieties was higher in the control condition with a top dressing of K. However, a higher percentage of seed germination was obtained from BU Soybean-2 in the control condition with a top dressing of K. Further, more electrical conductivity and more mean germination time were recorded in the case of BU Soybean-2 under WL with the basal application of K. Split application of 50% of recommended K fertilizer after the recession of flood water could be suggested for improved grain yield in flood-affected soybean growing areas.