Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Cell Death Discovery, 1(8), 2022

DOI: 10.1038/s41420-022-01237-5

Links

Tools

Export citation

Search in Google Scholar

Epigenetic mechanisms of Strip2 in differentiation of pluripotent stem cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSignificant evidence points to Strip2 being a key regulator of the differentiation processes of pluripotent embryonic stem cells. However, Strip2 mediated epigenetic regulation of embryonic differentiation and development is quite unknown. Here, we identified several interaction partners of Strip2, importantly the co-repressor molecular protein complex nucleosome remodeling deacetylase/Tripartite motif-containing 28/Histone deacetylases/Histone-lysine N-methyltransferase SETDB1 (NuRD/TRIM28/HDACs/SETDB1) histone methyltransferase, which is primarily involved in regulation of the pluripotency of embryonic stem cells and its differentiation. The complex is normally activated by binding of Krueppel-associated box zinc-finger proteins (KRAB-ZFPs) to specific DNA motifs, causing methylation of H3 to Lysin-9 residues (H3K9). Our data showed that Strip2 binds to a DNA motif (20 base pairs), like the KRAB-ZFPs. We establish that Strip2 is an epigenetic regulator of pluripotency and differentiation by modulating DNA KRAB-ZFPs as well as the NuRD/TRIM28/HDACs/SETDB1 histone methyltransferase complex.