Published in

Optica, Optics Letters, 1(48), p. 159, 2022

DOI: 10.1364/ol.474710

Links

Tools

Export citation

Search in Google Scholar

Architecture for integrated RF photonic downconversion of electronic signals

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Electronic analog to digital converters (ADCs) are running up against the well-known bit depth versus bandwidth trade off. Towards this end, radio frequency (RF) photonic-enhanced ADCs have been the subject of interest for some time. Optical frequency comb technology has been used as a workhorse underlying many of these architectures. Unfortunately, such designs must generally grapple with size, weight, and power (SWaP) concerns, as well as frequency ambiguity issues which threaten to obscure critical spectral information of detected RF signals. In this work, we address these concerns via an RF photonic downconverter with potential for easy integration and field deployment by leveraging a novel, to the best of our knowledge, hybrid microcomb/electro-optic comb design.