Published in

Special Topics in Information Technology, p. 27-37, 2022

DOI: 10.1007/978-3-031-15374-7_3

Links

Tools

Export citation

Search in Google Scholar

Dynamic Sediment Connectivity Modelling for Strategic River Basin Planning

Book chapter published in 2022 by Marco Tangi ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractSediment connectivity is a distributed property of river systems that emerges from the connected transfer of sediment between multiple sources and sinks. Its disruption, brought by anthropic disturbances, can have severe and unforeseen consequences on both fluvial ecosystems and human livelihood. Modeling network-scale sediment connectivity provides a foundational understanding of river processes and their response to new pressures and can be used to forecast future system evolutions. In this chapter, we present the basin-scale, dynamic sediment connectivity model D-CASCADE (Dynamic CAtchment Sediment Connectivity And DElivery), which quantifies spatiotemporal patterns of sediment delivery in river networks. D-CASCADE considers multiple factors affecting transport, including heterogeneities in hydrology and sediment supply, different grain sizes, channel morphological evolution, and reservoir presence and management. The model is designed to be flexible, data parsimonious, and computationally efficient. We also present two applications of D-CASCADE in real-world case studies for historic geomorphic evolution reconstruction and future dam impacts forecasting. D-CASCADE is intended for integrated, basin-scale water management efforts, to perform multiple screening of various decision portfolios for hydromorphological impact assessments.