Published in

Optica, Optics Express, 25(30), p. 45267, 2022

DOI: 10.1364/oe.472745

Links

Tools

Export citation

Search in Google Scholar

Generation of OAM-carrying space-time wave packets with time-dependent beam radii using a coherent combination of multiple LG modes on multiple frequencies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Space-time (ST) wave packets, in which spatial and temporal characteristics are coupled, have gained attention due to their unique propagation characteristics, such as propagation invariance and tunable group velocity in addition to their potential ability to carry orbital angular momentum (OAM). Through experiment and simulation, we explore the generation of OAM-carrying ST wave packets, with the unique property of a time-dependent beam radius at various ranges of propagation distances. To achieve this, we synthesize multiple frequency comb lines, each assigned to a coherent combination of multiple Laguerre-Gaussian (LGℓ,p) modes with the same azimuthal index but different radial indices. The time-dependent interference among the spatial modes at the different frequencies leads to the generation of the desired OAM-carrying ST wave packet with dynamically varying radii. The simulation results indicate that the dynamic range of beam radius oscillations increases with the number of modes and frequency lines. The simulated ST wave packet for OAM of orders +1 or +3 has an OAM purity of >95%. In addition, we experimentally generate and measure the OAM-carrying ST wave packets with time-dependent beam radii. In the experiment, several lines of a Kerr frequency comb are spatially modulated with the superposition of multiple LG modes and combined to generate such an ST wave packet. In the experiment, ST wave packets for OAM of orders +1 or +3 have an OAM purity of >64%. In simulation and experiment, OAM purity decreases and beam radius becomes larger over the propagation.